faculty

Linda Wordeman

worde@uw.edu

University of Washington, 

Cancer Biology

Developmental Biology, Stem Cells & Aging

Gene Expression, Cell Cycle & Chromosome Biology (Area Director)

Microtubule dynamics and Cell Division

Faculty Contact Information

Building: Health Sciences Building Room: G403 Box: 357290 http://faculty.washington.edu/worde/

Lab Information

Location: University of Washington Building: Health Sciences Building Room: H412, H418 Box: 357290 Phone: 206-543-9184 http://faculty.washington.edu/worde/

Accepting Students For:

Rotation, Spring

Publications

Modified carbazoles destabilize microtubules and kill glioblastoma multiform cells

Diaz P, Horne E, Xu C, Hamel E, Wagenbach M, Petrov R, Uhlenbruck B, Haas B, Hothi P, Wordeman L, Gussio R, Stella N.

European journal of medicinal chemistry. Forthcoming;

My Bibliography [journal]

ő≤-tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells.

Parker AL, Teo WS, Pandzic E, Vicente JJ, McCarroll JA, Wordeman L, Kavallaris M.

Life science alliance. 2018; 1(2). NIHMSID: NIHMS978392

PubMed [journal]
PMID:
30079401
PMCID:
PMC6070155

Arf GAPs and molecular motors.

Luo R, Reed CE, Sload JA, Wordeman L, Randazzo PA, Chen PW.

Small GTPases. 2017; :1-14.

PubMed [journal]
PMID:
28430047

The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation.

Decarreau J, Wagenbach M, Lynch E, Halpern AR, Vaughan JC, Kollman J, Wordeman L.

Nature cell biology. 2017; 19(4):384-390. NIHMSID: NIHMS849667

PubMed [journal]
PMID:
28263957
PMCID:
PMC5376238

Direct functional interaction of the kinesin-13 family member kinesin-like protein 2A (Kif2A) and Arf GAP with GTP-binding protein-like, ankyrin repeats and PH domains 1 (AGAP1).

Luo R, Chen PW, Wagenbach M, Jian X, Jenkins L, Wordeman L, Randazzo PA.

The Journal of biological chemistry. 2016; 291(49):25761.

PubMed [journal]
PMID:
27913662
PMCID:
PMC5207271

Research Summary

My lab studies microtubule dynamics, microtubule motors and chromosome segregation. We use human and mammalian cell lines to investigate the impact of microtubule motors and regulators of microtubule polymerization on the fidelity of cell division and chromosome instability. We use high resolution and super-resolution live cell imaging and total internal fluorescence (TIRF) microscopy in conjunction with fluorescent proteins, bio-sensors and gene-edited cell lines to investigate dynamic processes that govern chromosome segregation during mitosis.