2022-2023 MCB Area of Interest Course Information
Biophysical & Structural Biology

Please check the University of Washington Time Schedule for the most updated course information.

FOUNDATIONAL COURSES

Foundational Course One:
- **Course Number**: BIOC 530
- **Course Title**: Introduction to Structural Biology
- **Instructor(s)**: Baker, Klevit, Zheng, Veesler, Hol, Daggett, Maly, Weiner
- **Location (e.g., UW, FH, SLU)**: UW
- **Credits**: 3.0
- **Quarter, Weeks, and Frequency course is offered**: Autumn, weeks 1-10
- **Attributes (e.g., graded, lecture-based)**: Lecture-based
- **Sub Area (if applicable)**: Biochemistry/Structure
- **Synopsis**: Graduate-level discussion of the structure, function, and chemistry of proteins, control of enzymatic reactions. Prerequisite: a comprehensive course in biochemistry and permission.

Foundational Course Two:
- **Course Number**: MCB 536
- **Course Title**: Tools for Computational Biology
- **Instructor(s)**: A. Subramaniam
- **Location**: FH/UW
- **Credits**: 3.0
- **Quarter, Weeks, and Frequency course is offered**: Autumn, weeks 1-10
- **Attributes**: Graded, lecture, hands-on computational work
- **Sub Area (if applicable)**: Computational
- **Synopsis**: Introduces computational research methods to graduate students in biomedical science and related disciplines. Provides a survey of the most common tools and programming languages in the field. Students will gain foundational knowledge in reproducible computational science, including workflows and code documentation, and sufficient expertise that they can continue learning relevant tools to suit specific research interests. Classes will involve hands-on learning through coding exercises, collaborative problem solving, and extensive use of online learning resources.

ELECTIVE COURSES

Elective Course One:
- **Course Number**: BIOEN 588
- **Course Title**: Computational Protein Design
- **Instructor(s)**: V. Daggett
- **Location**: UW
- **Credits**: 4.0
- **Quarter, Weeks, and Frequency course is offered**: Winter, weeks 1-10, every year
- **Attributes**: Lab based
- **Sub Area (if applicable)**: Computational
- **Synopsis**: Explores methods in protein engineering, emphasizing biomedical and biotechnological applications. Includes molecular visualization, homology modeling, molecular
dynamics, computational protein design, and evaluation of designs. Introduces current research in subject area. Students learn to use and apply computational tools to investigate design problems.

Elective Course Two:
Course Number: B STR 519
Course Title: Current Problems in Macromolecular Structure
Instructor(s): Stenkamp
Location: UW
Credits: 2.0
Quarter, Weeks, and Frequency course is offered: Autumn, Winter, Spring, Summer
Attributes: Literature review
Sub Area (if applicable): Structure
Synopsis: Literature review for new topics in biological structure and macromolecules.

Elective Course Three:
Course Number: CONJ 544
Course Title: Protein Structure, Modification and Regulation
Instructor(s): Stoddard, Strong
Location: FH/UW
Credits: 1.5
Quarter, Weeks, and Frequency course is offered: Winter, weeks 1-5, will be offered in Winter 2023
Attributes: Lecture, literature review, methods
Sub Area (if applicable): Structure
Synopsis: Overview of general principles of protein structure, including forces that contribute to folding and stabilization, followed by an extended coverage of the means by which protein structure and function are modified and regulated. Examples from recent developments in protein folding, processing, and allosteric regulation.

Elective Course Four:
Course Number: MEDCH 528
Course Title: Biophysical Enzymology and Biopharmaceuticals
Instructor(s): Atkins, Catalano
Location: UW
Credits: 3.0
Quarter, Weeks, and Frequency course is offered: Winter, weeks 1-10, even years
Attributes: Lecture
Sub Area (if applicable):
Synopsis: Covers in-depth treatment of chemical catalysis and transition state theory as related to enzyme mechanisms; thermodynamics and kinetics of protein-ligand interactions, protein-protein-interactions and protein-lipid interactions, and methods for their study. Discusses therapeutically relevant examples, including viruses, therapeutic antibodies, and drug targets. (http://courses.washington.edu/medch528/)

Elective Course Five:
Course Number: PBIO 545 (same as NEURO 545)
Course Title: Quantitative Methods in Neuroscience
Instructor(s): Rieke
Location: UW
Credits: 3.0
Quarter, Weeks, and Frequency course is offered: Winter, weeks 1-10
Attributes: Literature review, computer exercises
Sub Area (if applicable): Biophysics, Neuroscience
Synopsis: Discusses quantitative methods applicable to the study of the nervous system. Revolves around computer exercises/discussion of journal papers. May include linear systems theory, Fourier analysis, ordinary differential equations, stochastic processes, signal detection, and information theory.

Elective Course Six:
Course Number: PHCOL 501
Course Title: Drug Discovery and Emerging Therapeutics
Instructor(s): N. Zheng
Location: UW
Credits: 2.0
Quarter, Weeks, and Frequency course is offered: Autumn
Attributes:
Sub Area (if applicable): Pharmacology
Synopsis: Consideration of the general principles and current approaches involved in modern drug discovery and development, with an emphasis on basic concepts in drug action, delivery, and metabolism. Discussion of novel drug discovery techniques and emerging non-standard therapeutics.

GENERAL METHODS/PROFESSIONAL DEVELOPMENT (GM/PD) COURSES
GM/PD Course One:
Course Number: BIOL 540B
Course Title: Uncommon Leaders: Women in Black, Indigenous, People of Color in Science
Instructor(s): Billie Swalla
Location: TBA
Credits: 2.0
Quarter, Weeks, and Frequency course is offered: Spring, weeks 1-5
Attributes: Graded, Career development and methods
Sub Area (if applicable):
Synopsis: This course is to learn about Women and Black, Indigenous, People of Color in Science and how they have extra challenges to overcome because of their identity. The way that some people think about their science is different and can lead to new discoveries and insights. It is important that you delve into the person that you choose to study and also what is exciting and transformational about their science. We will work on Wikipedia pages for these scientists and you will contact them and hopefully be able to interview them.

GM/PD Course Two:
Course Number: CENV 500
Course Title: Communicating Science to the Public Effectively
Instructor(s): Nicole Gregorio
Location: UW
Credits: 3.0
Quarter, Weeks, and Frequency course is offered: Winter, will be offered in Winter 2023
Attributes: Career development and methods
Sub Area (if applicable):
Synopsis: Whether you’re looking to give an unforgettable job talk, change a policymaker’s mind, or finally get your family to understand your research, the Engage course is a great professional development opportunity and learning experience. This is a discussion-based course for graduate students in the sciences that focuses on effective techniques for communicating science, with an emphasis on sharing your science with non-specialists. At the end of the quarter, each student will present a 20 minute public talk on their graduate research to be delivered during the 2023 Engage: The Science Speaker Series at Town Hall Seattle. In this course, students will:

• Develop and practice analogies to distill their research
• Perfect their elevator pitches
• Practice storytelling, audience consideration, and cultural competency
• Play improv games to leverage improvisation as a public speaking tool
• Engage in weekly readings and discussions
• Hear from guest speakers on science communication

Note: Space is limited in this course and it often fills quickly, with an extensive waitlist. An application process and expectation agreement must be completed by the student to be considered for the course. Please reach out to the instructor for more information.

GM/PD Course Three:
Course Number: MCB 512
Course Title: Scientific Speaking Seminar
Instructor(s): Jihong Bai
Location: FH
Credits: 1.5
Quarter, Weeks, and Frequency course is offered: Winter, weeks 1-5, will be offered in 2023
Attributes: Career development and methods
Sub Area (if applicable):
Synopsis: A crucial part of a scientific career is the ability to effectively deliver a research seminar. This course will focus on all aspects of giving a seminar and teach students how to introduce the research topic, how to make clear and effective slides, and how to explain methods and data in a clear manner. Students will prepare their own research seminar throughout the course. Each week they will practice a part of it and receive feedback from other students and the instructors. By the end of the course, students will have an entire seminar about their thesis project prepared. The course will also give examples of good and bad seminars and help students learn how to communicate with non-scientists about their research.

GM/PD Course Four:
Course Number: MCB 543
Course Title: Logic Constructs and Methodologies of Biological Research
Instructor(s): Sandra Bajjalieh
Location: UW
Credits: 3.0
Quarter, Weeks, and Frequency course is offered: Spring, weeks 1-10, will be offered in 2023
Attributes: Career development and methods
Sub Area (if applicable):
Synopsis: This course surveys the logic and methods of scientific practice from historical, practical, and sociological points of view. Topics covered include how the philosophy of science influences experimental approaches, how the demarcation between science and pseudoscience has evolved, how common cognitive biases lead to errors in judgement and interpretation, and how sociological factors impact scientific progress. After completing the course, students should understand and interface differently with science they encounter, papers they read, and their own projects.

GM/PD Course Five:
Course Number: MCB 560
Course Title: MCB Biotechnology Externship
Instructor(s): Celeste Berg
Location: TBA
Credits: 2.0
Quarter, Weeks, and Frequency course is offered: Summer, weeks 1-10
Attributes: Career development and methods

Synopsis: This externship program provides MCB students with the opportunity to gain firsthand research experience in biotechnology companies in the Puget Sound area. Applications are available in the early spring and reviewed by the Externship Program Director. Applications are submitted to participating companies to find a suitable match. This externship is only available during the summer between Year 1 and Year 2 to students who have completed 3 rotations and identified a dissertation laboratory. Students are supported by MCB for the summer quarter.

GM/PD Course Six:
Course Number: UCONJ 510
Course Title: Introductory Laboratory Based Biostatistics
Instructor(s): Lloyd Mancl
Location: UW
Credits: 2.0
Quarter, Weeks, and Frequency course is offered: Summer
Attributes: Lecture-based with assignments

Synopsis: Introduces methods of data description and statistical inference for experiments. Covers principles of design and analysis of experiments; descriptive statistics; comparison of group means and proportions; linear regression; and correlation. Emphasizes examples from laboratory-based biomedical sciences, and provides demonstrations using standard statistical programs.