https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&query_key=1&WebEnv=MCID_607aa8a4e8bc3f469378be66&retmode=json
Resource id #558 -- array(2) {
["header"]=>
array(2) {
["type"]=>
string(8) "esummary"
["version"]=>
string(3) "0.3"
}
["result"]=>
array(7) {
["uids"]=>
array(6) {
[0]=>
string(8) "33501915"
[1]=>
string(8) "32833957"
[2]=>
string(8) "31598381"
[3]=>
string(8) "31162049"
[4]=>
string(8) "30794534"
[5]=>
string(8) "31598380"
}
[33501915]=>
array(43) {
["uid"]=>
string(8) "33501915"
["pubdate"]=>
string(11) "2021 Jan 27"
["epubdate"]=>
string(11) "2021 Jan 27"
["source"]=>
string(5) "Elife"
["authors"]=>
array(3) {
[0]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(7) "Chen CC"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(121) "Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions."
["sorttitle"]=>
string(120) "pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions"
["volume"]=>
string(2) "10"
["issue"]=>
string(0) ""
["pages"]=>
string(0) ""
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101579614"
["issn"]=>
string(0) ""
["essn"]=>
string(9) "2050-084X"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(33) "PubMed - as supplied by publisher"
["pubstatus"]=>
string(2) "10"
["articleids"]=>
array(5) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "33501915"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(19) "10.7554/eLife.57838"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pii"
["idtypen"]=>
int(4)
["value"]=>
string(5) "57838"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "33501915"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "33501915"
}
}
["history"]=>
array(5) {
[0]=>
array(2) {
["pubstatus"]=>
string(8) "received"
["date"]=>
string(16) "2020/04/20 00:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(8) "accepted"
["date"]=>
string(16) "2021/01/26 00:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2021/01/27 08:37"
}
[3]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2021/01/28 06:00"
}
[4]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2021/01/28 06:00"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
string(0) ""
["fulljournalname"]=>
string(5) "eLife"
["elocationid"]=>
string(37) "pii: e57838. doi: 10.7554/eLife.57838"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2021/01/27 00:00"
["sortfirstauthor"]=>
string(8) "Hart SFM"
["vernaculartitle"]=>
string(0) ""
}
[32833957]=>
array(43) {
["uid"]=>
string(8) "32833957"
["pubdate"]=>
string(8) "2020 Aug"
["epubdate"]=>
string(11) "2020 Aug 24"
["source"]=>
string(9) "PLoS Biol"
["authors"]=>
array(14) {
[0]=>
array(3) {
["name"]=>
string(7) "Green R"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(5) "Sonal"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(6) "Wang L"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[3]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[4]=>
array(3) {
["name"]=>
string(4) "Lu W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[5]=>
array(3) {
["name"]=>
string(10) "Skelding D"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[6]=>
array(3) {
["name"]=>
string(9) "Burton JC"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[7]=>
array(3) {
["name"]=>
string(4) "Mi H"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[8]=>
array(3) {
["name"]=>
string(7) "Capel A"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[9]=>
array(3) {
["name"]=>
string(7) "Chen HA"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[10]=>
array(3) {
["name"]=>
string(5) "Lin A"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[11]=>
array(3) {
["name"]=>
string(14) "Subramaniam AR"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[12]=>
array(3) {
["name"]=>
string(13) "Rabinowitz JD"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[13]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(124) "Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect."
["sorttitle"]=>
string(123) "metabolic excretion associated with nutrient growth dysregulation promotes the rapid evolution of an overt metabolic defect"
["volume"]=>
string(2) "18"
["issue"]=>
string(1) "8"
["pages"]=>
string(8) "e3000757"
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101183755"
["issn"]=>
string(9) "1544-9173"
["essn"]=>
string(9) "1545-7885"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(28) "PubMed - indexed for MEDLINE"
["pubstatus"]=>
string(3) "258"
["articleids"]=>
array(7) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "32833957"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(28) "10.1371/journal.pbio.3000757"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pii"
["idtypen"]=>
int(4)
["value"]=>
string(19) "PBIOLOGY-D-19-00494"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "pmc"
["idtypen"]=>
int(8)
["value"]=>
string(10) "PMC7470746"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "32833957"
}
[5]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "32833957"
}
[6]=>
array(3) {
["idtype"]=>
string(5) "pmcid"
["idtypen"]=>
int(5)
["value"]=>
string(19) "pmc-id: PMC7470746;"
}
}
["history"]=>
array(6) {
[0]=>
array(2) {
["pubstatus"]=>
string(8) "received"
["date"]=>
string(16) "2019/02/20 00:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(8) "accepted"
["date"]=>
string(16) "2020/07/20 00:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(7) "revised"
["date"]=>
string(16) "2020/09/03 00:00"
}
[3]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2020/08/25 06:00"
}
[4]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2020/09/18 06:00"
}
[5]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2020/08/25 06:00"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
int(2)
["fulljournalname"]=>
string(12) "PLoS biology"
["elocationid"]=>
string(33) "doi: 10.1371/journal.pbio.3000757"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2020/08/24 00:00"
["sortfirstauthor"]=>
string(7) "Green R"
["vernaculartitle"]=>
string(0) ""
}
[31598381]=>
array(43) {
["uid"]=>
string(8) "31598381"
["pubdate"]=>
string(8) "2019 Mar"
["epubdate"]=>
string(10) "2019 Jan 4"
["source"]=>
string(10) "Quant Biol"
["authors"]=>
array(5) {
[0]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(10) "Skelding D"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(8) "Waite AJ"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[3]=>
array(3) {
["name"]=>
string(9) "Burton JC"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[4]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(99) "High-throughput quantification of microbial birth and death dynamics using fluorescence microscopy."
["sorttitle"]=>
string(98) "high throughput quantification of microbial birth and death dynamics using fluorescence microscopy"
["volume"]=>
string(1) "7"
["issue"]=>
string(1) "1"
["pages"]=>
string(5) "69-81"
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101639642"
["issn"]=>
string(9) "2095-4689"
["essn"]=>
string(9) "2095-4697"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(6) "PubMed"
["pubstatus"]=>
string(3) "256"
["articleids"]=>
array(7) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "31598381"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(25) "10.1007/s40484-018-0160-7"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pmc"
["idtypen"]=>
int(8)
["value"]=>
string(10) "PMC6785046"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "mid"
["idtypen"]=>
int(8)
["value"]=>
string(12) "NIHMS1049719"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31598381"
}
[5]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31598381"
}
[6]=>
array(3) {
["idtype"]=>
string(5) "pmcid"
["idtypen"]=>
int(5)
["value"]=>
string(47) "pmc-id: PMC6785046;manuscript-id: NIHMS1049719;"
}
}
["history"]=>
array(3) {
[0]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2019/10/11 06:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2019/10/11 06:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2019/10/11 06:01"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
int(2)
["fulljournalname"]=>
string(37) "Quantitative biology (Beijing, China)"
["elocationid"]=>
string(30) "doi: 10.1007/s40484-018-0160-7"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2019/03/01 00:00"
["sortfirstauthor"]=>
string(8) "Hart SFM"
["vernaculartitle"]=>
string(0) ""
}
[31162049]=>
array(43) {
["uid"]=>
string(8) "31162049"
["pubdate"]=>
string(10) "2019 Jun 4"
["epubdate"]=>
string(10) "2019 Jun 4"
["source"]=>
string(5) "Elife"
["authors"]=>
array(5) {
[0]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(10) "Pineda JMB"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(7) "Chen CC"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[3]=>
array(3) {
["name"]=>
string(7) "Green R"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[4]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(106) "Disentangling strictly self-serving mutations from win-win mutations in a mutualistic microbial community."
["sorttitle"]=>
string(105) "disentangling strictly self serving mutations from win win mutations in a mutualistic microbial community"
["volume"]=>
string(1) "8"
["issue"]=>
string(0) ""
["pages"]=>
string(0) ""
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101579614"
["issn"]=>
string(0) ""
["essn"]=>
string(9) "2050-084X"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(28) "PubMed - indexed for MEDLINE"
["pubstatus"]=>
string(1) "3"
["articleids"]=>
array(7) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "31162049"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(19) "10.7554/eLife.44812"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pii"
["idtypen"]=>
int(4)
["value"]=>
string(5) "44812"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "pmc"
["idtypen"]=>
int(8)
["value"]=>
string(10) "PMC6548503"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31162049"
}
[5]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31162049"
}
[6]=>
array(3) {
["idtype"]=>
string(5) "pmcid"
["idtypen"]=>
int(5)
["value"]=>
string(19) "pmc-id: PMC6548503;"
}
}
["history"]=>
array(5) {
[0]=>
array(2) {
["pubstatus"]=>
string(8) "received"
["date"]=>
string(16) "2018/12/31 00:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(8) "accepted"
["date"]=>
string(16) "2019/03/19 00:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2019/06/05 06:00"
}
[3]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2019/06/05 06:00"
}
[4]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2020/02/19 06:00"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
int(5)
["fulljournalname"]=>
string(5) "eLife"
["elocationid"]=>
string(37) "pii: e44812. doi: 10.7554/eLife.44812"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2019/06/04 00:00"
["sortfirstauthor"]=>
string(8) "Hart SFM"
["vernaculartitle"]=>
string(0) ""
}
[30794534]=>
array(43) {
["uid"]=>
string(8) "30794534"
["pubdate"]=>
string(8) "2019 Feb"
["epubdate"]=>
string(11) "2019 Feb 22"
["source"]=>
string(9) "PLoS Biol"
["authors"]=>
array(7) {
[0]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(4) "Mi H"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(7) "Green R"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[3]=>
array(3) {
["name"]=>
string(5) "Xie L"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[4]=>
array(3) {
["name"]=>
string(10) "Pineda JMB"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[5]=>
array(3) {
["name"]=>
string(8) "Momeni B"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[6]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(108) "Uncovering and resolving challenges of quantitative modeling in a simplified community of interacting cells."
["sorttitle"]=>
string(107) "uncovering and resolving challenges of quantitative modeling in a simplified community of interacting cells"
["volume"]=>
string(2) "17"
["issue"]=>
string(1) "2"
["pages"]=>
string(8) "e3000135"
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101183755"
["issn"]=>
string(9) "1544-9173"
["essn"]=>
string(9) "1545-7885"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(28) "PubMed - indexed for MEDLINE"
["pubstatus"]=>
string(3) "258"
["articleids"]=>
array(7) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "30794534"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(28) "10.1371/journal.pbio.3000135"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pii"
["idtypen"]=>
int(4)
["value"]=>
string(19) "PBIOLOGY-D-18-00513"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "pmc"
["idtypen"]=>
int(8)
["value"]=>
string(10) "PMC6402699"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "30794534"
}
[5]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "30794534"
}
[6]=>
array(3) {
["idtype"]=>
string(5) "pmcid"
["idtypen"]=>
int(5)
["value"]=>
string(19) "pmc-id: PMC6402699;"
}
}
["history"]=>
array(6) {
[0]=>
array(2) {
["pubstatus"]=>
string(8) "received"
["date"]=>
string(16) "2018/08/23 00:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(8) "accepted"
["date"]=>
string(16) "2019/01/18 00:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(7) "revised"
["date"]=>
string(16) "2019/03/06 00:00"
}
[3]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2019/02/23 06:00"
}
[4]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2019/11/26 06:00"
}
[5]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2019/02/23 06:00"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
int(10)
["fulljournalname"]=>
string(12) "PLoS biology"
["elocationid"]=>
string(33) "doi: 10.1371/journal.pbio.3000135"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2019/02/22 00:00"
["sortfirstauthor"]=>
string(8) "Hart SFM"
["vernaculartitle"]=>
string(0) ""
}
[31598380]=>
array(43) {
["uid"]=>
string(8) "31598380"
["pubdate"]=>
string(8) "2018 Jun"
["epubdate"]=>
string(11) "2018 Jul 26"
["source"]=>
string(10) "Quant Biol"
["authors"]=>
array(5) {
[0]=>
array(3) {
["name"]=>
string(10) "Skelding D"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[1]=>
array(3) {
["name"]=>
string(8) "Hart SFM"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[2]=>
array(3) {
["name"]=>
string(12) "Vidyasagar T"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[3]=>
array(3) {
["name"]=>
string(12) "Pozhitkov AE"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
[4]=>
array(3) {
["name"]=>
string(6) "Shou W"
["authtype"]=>
string(6) "Author"
["clusterid"]=>
string(0) ""
}
}
["lastauthor"]=>
string(6) "Shou W"
["title"]=>
string(94) "Developing a low-cost milliliter-scale chemostat array for precise control of cellular growth."
["sorttitle"]=>
string(93) "developing a low cost milliliter scale chemostat array for precise control of cellular growth"
["volume"]=>
string(1) "6"
["issue"]=>
string(1) "2"
["pages"]=>
string(7) "129-141"
["lang"]=>
array(1) {
[0]=>
string(3) "eng"
}
["nlmuniqueid"]=>
string(9) "101639642"
["issn"]=>
string(9) "2095-4689"
["essn"]=>
string(9) "2095-4697"
["pubtype"]=>
array(1) {
[0]=>
string(15) "Journal Article"
}
["recordstatus"]=>
string(6) "PubMed"
["pubstatus"]=>
string(3) "256"
["articleids"]=>
array(7) {
[0]=>
array(3) {
["idtype"]=>
string(6) "pubmed"
["idtypen"]=>
int(1)
["value"]=>
string(8) "31598380"
}
[1]=>
array(3) {
["idtype"]=>
string(3) "doi"
["idtypen"]=>
int(3)
["value"]=>
string(25) "10.1007/s40484-018-0143-8"
}
[2]=>
array(3) {
["idtype"]=>
string(3) "pmc"
["idtypen"]=>
int(8)
["value"]=>
string(10) "PMC6785052"
}
[3]=>
array(3) {
["idtype"]=>
string(3) "mid"
["idtypen"]=>
int(8)
["value"]=>
string(12) "NIHMS1049724"
}
[4]=>
array(3) {
["idtype"]=>
string(3) "rid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31598380"
}
[5]=>
array(3) {
["idtype"]=>
string(3) "eid"
["idtypen"]=>
int(8)
["value"]=>
string(8) "31598380"
}
[6]=>
array(3) {
["idtype"]=>
string(5) "pmcid"
["idtypen"]=>
int(5)
["value"]=>
string(47) "pmc-id: PMC6785052;manuscript-id: NIHMS1049724;"
}
}
["history"]=>
array(3) {
[0]=>
array(2) {
["pubstatus"]=>
string(6) "entrez"
["date"]=>
string(16) "2019/10/11 06:00"
}
[1]=>
array(2) {
["pubstatus"]=>
string(6) "pubmed"
["date"]=>
string(16) "2018/06/01 00:00"
}
[2]=>
array(2) {
["pubstatus"]=>
string(7) "medline"
["date"]=>
string(16) "2018/06/01 00:01"
}
}
["references"]=>
array(0) {
}
["attributes"]=>
array(1) {
[0]=>
string(12) "Has Abstract"
}
["pmcrefcount"]=>
int(2)
["fulljournalname"]=>
string(37) "Quantitative biology (Beijing, China)"
["elocationid"]=>
string(30) "doi: 10.1007/s40484-018-0143-8"
["doctype"]=>
string(8) "citation"
["srccontriblist"]=>
array(0) {
}
["booktitle"]=>
string(0) ""
["medium"]=>
string(0) ""
["edition"]=>
string(0) ""
["publisherlocation"]=>
string(0) ""
["publishername"]=>
string(0) ""
["srcdate"]=>
string(0) ""
["reportnumber"]=>
string(0) ""
["availablefromurl"]=>
string(0) ""
["locationlabel"]=>
string(0) ""
["doccontriblist"]=>
array(0) {
}
["docdate"]=>
string(0) ""
["bookname"]=>
string(0) ""
["chapter"]=>
string(0) ""
["sortpubdate"]=>
string(16) "2018/06/01 00:00"
["sortfirstauthor"]=>
string(10) "Skelding D"
["vernaculartitle"]=>
string(0) ""
}
}
}
Publications
The following publications were retrieved from PubMed:
Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.
Green R, Sonal, Wang L, Hart SFM, Lu W, Skelding D, Burton JC, Mi H, Capel A, Chen HA, Lin A, Subramaniam AR, Rabinowitz JD, Shou W.
PLoS Biol. 2020 Aug; 8(18)e3000757
Publications Link