student

Stephan Raiders

sraiders@uw.edu

Fred Hutch

Basic Sciences

Cell Signaling & Cell/Environment Interactions

Developmental Biology, Stem Cells & Aging

Genetics, Genomics & Evolution

Entry Quarter: Autumn 2017
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&query_key=1&WebEnv=MCID_62f51bb2dc4a20298f69a104&retmode=json
Resource id #314 -- array(2) { ["header"]=> array(2) { ["type"]=> string(8) "esummary" ["version"]=> string(3) "0.3" } ["result"]=> array(7) { ["uids"]=> array(6) { [0]=> string(8) "35530512" [1]=> string(8) "33759761" [2]=> string(8) "33468571" [3]=> string(8) "30024879" [4]=> string(8) "27192049" [5]=> string(8) "27035721" } [35530512]=> array(43) { ["uid"]=> string(8) "35530512" ["pubdate"]=> string(10) "2022 Apr 5" ["epubdate"]=> string(10) "2022 Apr 5" ["source"]=> string(10) "Bio Protoc" ["authors"]=> array(3) { [0]=> array(3) { ["name"]=> string(9) "Raiders S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(7) "Klein M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(9) "Singhvi A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Singhvi A" ["title"]=> string(79) "Multiplexing Thermotaxis Behavior Measurement in Caenorhabditis elegans." ["sorttitle"]=> string(75) "multiplexing thermotaxis behavior measurement in i caenorhabditis elegans i" ["volume"]=> string(2) "12" ["issue"]=> string(1) "7" ["pages"]=> string(5) "e4370" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101635102" ["issn"]=> string(0) "" ["essn"]=> string(9) "2331-8325" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(6) "PubMed" ["pubstatus"]=> string(3) "258" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "35530512" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(23) "10.21769/BioProtoc.4370" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(4) "4370" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC9018438" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "35530512" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "35530512" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(44) "pmc-id: PMC9018438;embargo-date: 2023/04/05;" } } ["history"]=> array(7) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2022/01/29 00:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "revised" ["date"]=> string(16) "2021/10/18 00:00" } [2]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2022/02/08 00:00" } [3]=> array(2) { ["pubstatus"]=> string(11) "pmc-release" ["date"]=> string(16) "2023/04/05 00:00" } [4]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2022/05/09 04:23" } [5]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2022/05/10 06:00" } [6]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2022/05/10 06:01" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> string(0) "" ["fulljournalname"]=> string(12) "Bio-protocol" ["elocationid"]=> string(28) "doi: 10.21769/BioProtoc.4370" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2022/04/05 00:00" ["sortfirstauthor"]=> string(9) "Raiders S" ["vernaculartitle"]=> string(0) "" } [33759761]=> array(43) { ["uid"]=> string(8) "33759761" ["pubdate"]=> string(11) "2021 Mar 24" ["epubdate"]=> string(11) "2021 Mar 24" ["source"]=> string(5) "Elife" ["authors"]=> array(7) { [0]=> array(3) { ["name"]=> string(9) "Raiders S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(8) "Black EC" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(5) "Bae A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(12) "MacFarlane S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(7) "Klein M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(8) "Shaham S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [6]=> array(3) { ["name"]=> string(9) "Singhvi A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Singhvi A" ["title"]=> string(88) "Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior." ["sorttitle"]=> string(87) "glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior" ["volume"]=> string(2) "10" ["issue"]=> string(0) "" ["pages"]=> string(0) "" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101579614" ["issn"]=> string(0) "" ["essn"]=> string(9) "2050-084X" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(1) "3" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "33759761" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(19) "10.7554/eLife.63532" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(5) "63532" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC8079151" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "33759761" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "33759761" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC8079151;" } } ["history"]=> array(5) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2020/09/29 00:00" } [1]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2021/03/23 00:00" } [2]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2021/03/25 06:00" } [3]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2021/09/14 06:00" } [4]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2021/03/24 12:33" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(10) ["fulljournalname"]=> string(5) "eLife" ["elocationid"]=> string(37) "pii: e63532. doi: 10.7554/eLife.63532" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2021/03/24 00:00" ["sortfirstauthor"]=> string(9) "Raiders S" ["vernaculartitle"]=> string(0) "" } [33468571]=> array(43) { ["uid"]=> string(8) "33468571" ["pubdate"]=> string(10) "2021 Feb 3" ["epubdate"]=> string(11) "2021 Jan 19" ["source"]=> string(10) "J Neurosci" ["authors"]=> array(7) { [0]=> array(3) { ["name"]=> string(9) "Raiders S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(5) "Han T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(14) "Scott-Hewitt N" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(9) "Kucenas S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(5) "Lew D" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(8) "Logan MA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [6]=> array(3) { ["name"]=> string(9) "Singhvi A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Singhvi A" ["title"]=> string(84) "Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species." ["sorttitle"]=> string(80) "engulfed by glia glial pruning in development function and injury across species" ["volume"]=> string(2) "41" ["issue"]=> string(1) "5" ["pages"]=> string(7) "823-833" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(7) "8102140" ["issn"]=> string(9) "0270-6474" ["essn"]=> string(9) "1529-2401" ["pubtype"]=> array(2) { [0]=> string(15) "Journal Article" [1]=> string(6) "Review" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "33468571" } [1]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(22) "JNEUROSCI.1660-20.2020" } [2]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(30) "10.1523/JNEUROSCI.1660-20.2020" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC7880271" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "33468571" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "33468571" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC7880271;" } } ["history"]=> array(6) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2020/06/30 00:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "revised" ["date"]=> string(16) "2020/10/20 00:00" } [2]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2020/10/26 00:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2021/01/21 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2021/04/29 06:00" } [5]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2021/01/20 05:43" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(4) ["fulljournalname"]=> string(82) "The Journal of neuroscience : the official journal of the Society for Neuroscience" ["elocationid"]=> string(35) "doi: 10.1523/JNEUROSCI.1660-20.2020" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2021/02/03 00:00" ["sortfirstauthor"]=> string(9) "Raiders S" ["vernaculartitle"]=> string(0) "" } [30024879]=> array(43) { ["uid"]=> string(8) "30024879" ["pubdate"]=> string(8) "2018 Jul" ["epubdate"]=> string(11) "2018 Jul 19" ["source"]=> string(10) "PLoS Genet" ["authors"]=> array(4) { [0]=> array(3) { ["name"]=> string(10) "Raiders SA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(11) "Eastwood MD" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(8) "Bacher M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(9) "Priess JR" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Priess JR" ["title"]=> string(87) "Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis." ["sorttitle"]=> string(86) "binucleate germ cells in caenorhabditis elegans are removed by physiological apoptosis" ["volume"]=> string(2) "14" ["issue"]=> string(1) "7" ["pages"]=> string(8) "e1007417" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101239074" ["issn"]=> string(9) "1553-7390" ["essn"]=> string(9) "1553-7404" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "258" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "30024879" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(28) "10.1371/journal.pgen.1007417" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(20) "PGENETICS-D-18-00514" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC6053125" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "30024879" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "30024879" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC6053125;" } } ["history"]=> array(5) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2018/03/13 00:00" } [1]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2018/05/15 00:00" } [2]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2018/07/20 06:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2018/07/20 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2019/01/16 06:00" } } ["references"]=> array(1) { [0]=> array(4) { ["refsource"]=> string(38) "PLoS Genet. 2018 Jul 19;14(7):e1007425" ["reftype"]=> string(10) "Comment in" ["pmid"]=> int(30024884) ["note"]=> string(0) "" } } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(19) ["fulljournalname"]=> string(13) "PLoS genetics" ["elocationid"]=> string(33) "doi: 10.1371/journal.pgen.1007417" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2018/07/19 00:00" ["sortfirstauthor"]=> string(10) "Raiders SA" ["vernaculartitle"]=> string(0) "" } [27192049]=> array(43) { ["uid"]=> string(8) "27192049" ["pubdate"]=> string(8) "2016 May" ["epubdate"]=> string(11) "2016 May 18" ["source"]=> string(10) "PLoS Genet" ["authors"]=> array(3) { [0]=> array(3) { ["name"]=> string(6) "Asan A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(10) "Raiders SA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(9) "Priess JR" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Priess JR" ["title"]=> string(83) "Correction: Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes." ["sorttitle"]=> string(80) "correction morphogenesis of the c elegans intestine involves axon guidance genes" ["volume"]=> string(2) "12" ["issue"]=> string(1) "5" ["pages"]=> string(8) "e1006077" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101239074" ["issn"]=> string(9) "1553-7390" ["essn"]=> string(9) "1553-7404" ["pubtype"]=> array(1) { [0]=> string(17) "Published Erratum" } ["recordstatus"]=> string(33) "PubMed - as supplied by publisher" ["pubstatus"]=> string(3) "258" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "27192049" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(28) "10.1371/journal.pgen.1006077" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(20) "PGENETICS-D-16-00986" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC4871574" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "27192049" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "27192049" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC4871574;" } } ["history"]=> array(3) { [0]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2016/05/19 06:00" } [1]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2016/05/19 06:00" } [2]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2016/05/19 06:00" } } ["references"]=> array(1) { [0]=> array(4) { ["refsource"]=> string(95) "PLoS Genet. 2016 Apr 1;12(4):e1005950. doi: 10.1371/journal.pgen.1005950. eCollection 2016 Apr." ["reftype"]=> string(11) "Erratum for" ["pmid"]=> int(27035721) ["note"]=> string(0) "" } } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(2) ["fulljournalname"]=> string(13) "PLoS genetics" ["elocationid"]=> string(33) "doi: 10.1371/journal.pgen.1006077" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2016/05/18 00:00" ["sortfirstauthor"]=> string(6) "Asan A" ["vernaculartitle"]=> string(0) "" } [27035721]=> array(43) { ["uid"]=> string(8) "27035721" ["pubdate"]=> string(8) "2016 Apr" ["epubdate"]=> string(10) "2016 Apr 1" ["source"]=> string(10) "PLoS Genet" ["authors"]=> array(3) { [0]=> array(3) { ["name"]=> string(6) "Asan A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(10) "Raiders SA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(9) "Priess JR" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Priess JR" ["title"]=> string(71) "Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes." ["sorttitle"]=> string(69) "morphogenesis of the c elegans intestine involves axon guidance genes" ["volume"]=> string(2) "12" ["issue"]=> string(1) "4" ["pages"]=> string(8) "e1005950" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101239074" ["issn"]=> string(9) "1553-7390" ["essn"]=> string(9) "1553-7404" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "258" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "27035721" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(28) "10.1371/journal.pgen.1005950" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(20) "PGENETICS-D-15-03030" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC4817974" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "27035721" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "27035721" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC4817974;" } } ["history"]=> array(5) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2015/12/14 00:00" } [1]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2016/03/01 00:00" } [2]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2016/04/02 06:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2016/04/02 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2016/08/27 06:00" } } ["references"]=> array(1) { [0]=> array(4) { ["refsource"]=> string(35) "PLoS Genet. 2016 May;12(5):e1006077" ["reftype"]=> string(10) "Erratum in" ["pmid"]=> int(27192049) ["note"]=> string(0) "" } } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(12) ["fulljournalname"]=> string(13) "PLoS genetics" ["elocationid"]=> string(33) "doi: 10.1371/journal.pgen.1005950" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2016/04/01 00:00" ["sortfirstauthor"]=> string(6) "Asan A" ["vernaculartitle"]=> string(0) "" } } }

Publications

The following publications were retrieved from PubMed:

Multiplexing Thermotaxis Behavior Measurement in Caenorhabditis elegans.

Raiders S, Klein M, Singhvi A.

Bio Protoc. 2022 Apr 5; 7(12)e4370

Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior.

Raiders S, Black EC, Bae A, MacFarlane S, Klein M, Shaham S, Singhvi A.

Elife. 2021 Mar 24; (10)

Engulfed by Glia: Glial Pruning in Development, Function, and Injury across Species.

Raiders S, Han T, Scott-Hewitt N, Kucenas S, Lew D, Logan MA, Singhvi A.

J Neurosci. 2021 Feb 3; 5(41)823-833

Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis.

Raiders SA, Eastwood MD, Bacher M, Priess JR.

PLoS Genet. 2018 Jul; 7(14)e1007417

Correction: Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes.

Asan A, Raiders SA, Priess JR.

PLoS Genet. 2016 May; 5(12)e1006077

Research Summary

Neurons have their shape and function regulated through interactions with their underlying supportive cells, called glia. Glia engulf fragments of neurons to maintain neuron protein homeostasis or to contribute to the elimination of synapses during the developmental process of pruning and emerging evidence suggests that defective regulation of glial engulfment contributes to diseases such as Alzheimer’s or Parkinson’s. Despite this, little is known about the regulatory mechanisms of glial engulfment and so I propose to interrogate the regulatory function of a Parkinson’s Disease associated protein, Parkin, in glial engulfment.

Lab Information