student

Thomas Bello

ThomasLBello@gmail.com

Fred Hutch

Human Biology

Cancer Biology

Cell Signaling & Cell/Environment Interactions

Computational Biology

Entry Quarter: Autumn 2016

Current Position

Defense date: 10/13/2020
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esummary.fcgi?db=pubmed&query_key=1&WebEnv=MCID_614df259ad1bef1b1a2ebb2a&retmode=json
Resource id #560 -- array(2) { ["header"]=> array(2) { ["type"]=> string(8) "esummary" ["version"]=> string(3) "0.3" } ["result"]=> array(7) { ["uids"]=> array(6) { [0]=> string(8) "34296206" [1]=> string(8) "30273912" [2]=> string(8) "29782884" [3]=> string(8) "29738911" [4]=> string(8) "29466914" [5]=> string(8) "29089541" } [34296206]=> array(43) { ["uid"]=> string(8) "34296206" ["pubdate"]=> string(11) "2021 Jun 21" ["epubdate"]=> string(10) "2021 Jun 1" ["source"]=> string(16) "Cell Rep Methods" ["authors"]=> array(9) { [0]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(6) "Chan M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(11) "Golkowski M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(6) "Xue AG" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(11) "Khasnavis N" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(11) "Ceribelli M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [6]=> array(3) { ["name"]=> string(6) "Ong SE" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [7]=> array(3) { ["name"]=> string(9) "Thomas CJ" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [8]=> array(3) { ["name"]=> string(9) "Gujral TS" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Gujral TS" ["title"]=> string(78) "KiRNet: Kinase-centered network propagation of pharmacological screen results." ["sorttitle"]=> string(76) "kirnet kinase centered network propagation of pharmacological screen results" ["volume"]=> string(1) "1" ["issue"]=> string(1) "2" ["pages"]=> string(0) "" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(16) "9918227360606676" ["issn"]=> string(0) "" ["essn"]=> string(9) "2667-2375" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(6) "PubMed" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(6) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "34296206" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(28) "10.1016/j.crmeth.2021.100007" } [2]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC8294099" } [3]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "34296206" } [4]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "34296206" } [5]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC8294099;" } } ["history"]=> array(3) { [0]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2021/07/23 06:56" } [1]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2021/07/24 06:00" } [2]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2021/07/24 06:01" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> string(0) "" ["fulljournalname"]=> string(20) "Cell reports methods" ["elocationid"]=> string(46) "pii: 100007. doi: 10.1016/j.crmeth.2021.100007" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2021/06/21 00:00" ["sortfirstauthor"]=> string(7) "Bello T" ["vernaculartitle"]=> string(0) "" } [30273912]=> array(43) { ["uid"]=> string(8) "30273912" ["pubdate"]=> string(11) "2018 Oct 26" ["epubdate"]=> string(11) "2018 Sep 18" ["source"]=> string(8) "iScience" ["authors"]=> array(2) { [0]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(9) "Gujral TS" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(9) "Gujral TS" ["title"]=> string(49) "KInhibition: A Kinase Inhibitor Selection Portal." ["sorttitle"]=> string(47) "kinhibition a kinase inhibitor selection portal" ["volume"]=> string(1) "8" ["issue"]=> string(0) "" ["pages"]=> string(5) "49-53" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101724038" ["issn"]=> string(0) "" ["essn"]=> string(9) "2589-0042" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(6) "PubMed" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "30273912" } [1]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(21) "S2589-0042(18)30144-5" } [2]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(26) "10.1016/j.isci.2018.09.009" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC6170255" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "30273912" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "30273912" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC6170255;" } } ["history"]=> array(6) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2018/06/08 00:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "revised" ["date"]=> string(16) "2018/08/21 00:00" } [2]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2018/09/10 00:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2018/10/03 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2018/10/03 06:01" } [5]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2018/10/02 06:00" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(3) ["fulljournalname"]=> string(8) "iScience" ["elocationid"]=> string(31) "doi: 10.1016/j.isci.2018.09.009" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2018/10/26 00:00" ["sortfirstauthor"]=> string(7) "Bello T" ["vernaculartitle"]=> string(0) "" } [29782884]=> array(43) { ["uid"]=> string(8) "29782884" ["pubdate"]=> string(11) "2018 Jul 15" ["epubdate"]=> string(11) "2018 May 18" ["source"]=> string(18) "J Neurosci Methods" ["authors"]=> array(6) { [0]=> array(3) { ["name"]=> string(9) "Mendez OA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(9) "Potter CJ" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(8) "Valdez M" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(10) "Trouard TP" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(8) "Koshy AA" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(8) "Koshy AA" ["title"]=> string(92) "Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations." ["sorttitle"]=> string(91) "semi automated quantification and neuroanatomical mapping of heterogeneous cell populations" ["volume"]=> string(3) "305" ["issue"]=> string(0) "" ["pages"]=> string(6) "98-104" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(7) "7905558" ["issn"]=> string(9) "0165-0270" ["essn"]=> string(9) "1872-678X" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(8) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "29782884" } [1]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(21) "S0165-0270(18)30139-0" } [2]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(30) "10.1016/j.jneumeth.2018.05.008" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC6357967" } [4]=> array(3) { ["idtype"]=> string(3) "mid" ["idtypen"]=> int(8) ["value"]=> string(11) "NIHMS996003" } [5]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "29782884" } [6]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "29782884" } [7]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(46) "pmc-id: PMC6357967;manuscript-id: NIHMS996003;" } } ["history"]=> array(6) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2017/10/18 00:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "revised" ["date"]=> string(16) "2018/02/13 00:00" } [2]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2018/05/14 00:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2018/05/22 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2019/11/02 06:00" } [5]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2018/05/22 06:00" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(2) ["fulljournalname"]=> string(31) "Journal of neuroscience methods" ["elocationid"]=> string(35) "doi: 10.1016/j.jneumeth.2018.05.008" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2018/07/15 00:00" ["sortfirstauthor"]=> string(9) "Mendez OA" ["vernaculartitle"]=> string(0) "" } [29738911]=> array(43) { ["uid"]=> string(8) "29738911" ["pubdate"]=> string(10) "2018 Aug 1" ["epubdate"]=> string(10) "2018 May 5" ["source"]=> string(10) "Neuroimage" ["authors"]=> array(6) { [0]=> array(3) { ["name"]=> string(11) "Demetriou L" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(12) "Kowalczyk OS" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(7) "Tyson G" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(11) "Newbould RD" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(7) "Wall MB" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(7) "Wall MB" ["title"]=> string(150) "A comprehensive evaluation of increasing temporal resolution with multiband-accelerated protocols and effects on statistical outcome measures in fMRI." ["sorttitle"]=> string(147) "comprehensive evaluation of increasing temporal resolution with multiband accelerated protocols and effects on statistical outcome measures in fmri" ["volume"]=> string(3) "176" ["issue"]=> string(0) "" ["pages"]=> string(7) "404-416" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(7) "9215515" ["issn"]=> string(9) "1053-8119" ["essn"]=> string(9) "1095-9572" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(5) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "29738911" } [1]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(21) "S1053-8119(18)30409-9" } [2]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(32) "10.1016/j.neuroimage.2018.05.011" } [3]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "29738911" } [4]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "29738911" } } ["history"]=> array(6) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2017/09/19 00:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "revised" ["date"]=> string(16) "2018/04/30 00:00" } [2]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2018/05/02 00:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2018/05/09 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2019/02/02 06:00" } [5]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2018/05/09 06:00" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(25) ["fulljournalname"]=> string(10) "NeuroImage" ["elocationid"]=> string(37) "doi: 10.1016/j.neuroimage.2018.05.011" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2018/08/01 00:00" ["sortfirstauthor"]=> string(11) "Demetriou L" ["vernaculartitle"]=> string(0) "" } [29466914]=> array(43) { ["uid"]=> string(8) "29466914" ["pubdate"]=> string(4) "2018" ["epubdate"]=> string(10) "2018 Apr 5" ["source"]=> string(10) "Cell Cycle" ["authors"]=> array(21) { [0]=> array(3) { ["name"]=> string(11) "Ferreccio A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(9) "Mathieu J" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(9) "Detraux D" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(14) "Somasundaram L" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(11) "Cavanaugh C" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(8) "Sopher B" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [6]=> array(3) { ["name"]=> string(9) "Fischer K" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [7]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [8]=> array(3) { ["name"]=> string(11) "M Hussein A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [9]=> array(3) { ["name"]=> string(6) "Levy S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [10]=> array(3) { ["name"]=> string(6) "Cook S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [11]=> array(3) { ["name"]=> string(8) "Sidhu SB" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [12]=> array(3) { ["name"]=> string(8) "Artoni F" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [13]=> array(3) { ["name"]=> string(10) "Palpant NJ" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [14]=> array(3) { ["name"]=> string(10) "Reinecke H" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [15]=> array(3) { ["name"]=> string(6) "Wang Y" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [16]=> array(3) { ["name"]=> string(10) "Paddison P" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [17]=> array(3) { ["name"]=> string(7) "Murry C" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [18]=> array(3) { ["name"]=> string(9) "Jayadev S" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [19]=> array(3) { ["name"]=> string(6) "Ware C" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [20]=> array(3) { ["name"]=> string(15) "Ruohola-Baker H" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(15) "Ruohola-Baker H" ["title"]=> string(117) "Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal." ["sorttitle"]=> string(116) "inducible crispr genome editing platform in naive human embryonic stem cells reveals jarid2 function in self renewal" ["volume"]=> string(2) "17" ["issue"]=> string(1) "5" ["pages"]=> string(7) "535-549" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101137841" ["issn"]=> string(9) "1538-4101" ["essn"]=> string(9) "1551-4005" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(3) "256" ["articleids"]=> array(6) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "29466914" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(29) "10.1080/15384101.2018.1442621" } [2]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC5969550" } [3]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "29466914" } [4]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "29466914" } [5]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC5969550;" } } ["history"]=> array(3) { [0]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2018/02/23 06:00" } [1]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2019/09/10 06:00" } [2]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2018/02/23 06:00" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(4) ["fulljournalname"]=> string(29) "Cell cycle (Georgetown, Tex.)" ["elocationid"]=> string(34) "doi: 10.1080/15384101.2018.1442621" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2018/01/01 00:00" ["sortfirstauthor"]=> string(11) "Ferreccio A" ["vernaculartitle"]=> string(0) "" } [29089541]=> array(43) { ["uid"]=> string(8) "29089541" ["pubdate"]=> string(10) "2017 Nov 1" ["epubdate"]=> string(10) "2017 Nov 1" ["source"]=> string(10) "Nat Commun" ["authors"]=> array(8) { [0]=> array(3) { ["name"]=> string(7) "Arang N" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [1]=> array(3) { ["name"]=> string(7) "Kain HS" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [2]=> array(3) { ["name"]=> string(10) "Glennon EK" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [3]=> array(3) { ["name"]=> string(7) "Bello T" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [4]=> array(3) { ["name"]=> string(10) "Dudgeon DR" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [5]=> array(3) { ["name"]=> string(10) "Walter ENF" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [6]=> array(3) { ["name"]=> string(9) "Gujral TS" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } [7]=> array(3) { ["name"]=> string(12) "Kaushansky A" ["authtype"]=> string(6) "Author" ["clusterid"]=> string(0) "" } } ["lastauthor"]=> string(12) "Kaushansky A" ["title"]=> string(107) "Identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles." ["sorttitle"]=> string(106) "identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles" ["volume"]=> string(1) "8" ["issue"]=> string(1) "1" ["pages"]=> string(4) "1232" ["lang"]=> array(1) { [0]=> string(3) "eng" } ["nlmuniqueid"]=> string(9) "101528555" ["issn"]=> string(0) "" ["essn"]=> string(9) "2041-1723" ["pubtype"]=> array(1) { [0]=> string(15) "Journal Article" } ["recordstatus"]=> string(28) "PubMed - indexed for MEDLINE" ["pubstatus"]=> string(1) "3" ["articleids"]=> array(7) { [0]=> array(3) { ["idtype"]=> string(6) "pubmed" ["idtypen"]=> int(1) ["value"]=> string(8) "29089541" } [1]=> array(3) { ["idtype"]=> string(3) "doi" ["idtypen"]=> int(3) ["value"]=> string(26) "10.1038/s41467-017-01345-2" } [2]=> array(3) { ["idtype"]=> string(3) "pii" ["idtypen"]=> int(4) ["value"]=> string(26) "10.1038/s41467-017-01345-2" } [3]=> array(3) { ["idtype"]=> string(3) "pmc" ["idtypen"]=> int(8) ["value"]=> string(10) "PMC5663700" } [4]=> array(3) { ["idtype"]=> string(3) "rid" ["idtypen"]=> int(8) ["value"]=> string(8) "29089541" } [5]=> array(3) { ["idtype"]=> string(3) "eid" ["idtypen"]=> int(8) ["value"]=> string(8) "29089541" } [6]=> array(3) { ["idtype"]=> string(5) "pmcid" ["idtypen"]=> int(5) ["value"]=> string(19) "pmc-id: PMC5663700;" } } ["history"]=> array(5) { [0]=> array(2) { ["pubstatus"]=> string(8) "received" ["date"]=> string(16) "2016/10/24 00:00" } [1]=> array(2) { ["pubstatus"]=> string(8) "accepted" ["date"]=> string(16) "2017/09/11 00:00" } [2]=> array(2) { ["pubstatus"]=> string(6) "entrez" ["date"]=> string(16) "2017/11/02 06:00" } [3]=> array(2) { ["pubstatus"]=> string(6) "pubmed" ["date"]=> string(16) "2017/11/02 06:00" } [4]=> array(2) { ["pubstatus"]=> string(7) "medline" ["date"]=> string(16) "2018/09/06 06:00" } } ["references"]=> array(0) { } ["attributes"]=> array(1) { [0]=> string(12) "Has Abstract" } ["pmcrefcount"]=> int(7) ["fulljournalname"]=> string(21) "Nature communications" ["elocationid"]=> string(31) "doi: 10.1038/s41467-017-01345-2" ["doctype"]=> string(8) "citation" ["srccontriblist"]=> array(0) { } ["booktitle"]=> string(0) "" ["medium"]=> string(0) "" ["edition"]=> string(0) "" ["publisherlocation"]=> string(0) "" ["publishername"]=> string(0) "" ["srcdate"]=> string(0) "" ["reportnumber"]=> string(0) "" ["availablefromurl"]=> string(0) "" ["locationlabel"]=> string(0) "" ["doccontriblist"]=> array(0) { } ["docdate"]=> string(0) "" ["bookname"]=> string(0) "" ["chapter"]=> string(0) "" ["sortpubdate"]=> string(16) "2017/11/01 00:00" ["sortfirstauthor"]=> string(7) "Arang N" ["vernaculartitle"]=> string(0) "" } } }

Publications

The following publications were retrieved from PubMed:

KiRNet: Kinase-centered network propagation of pharmacological screen results.

Bello T, Chan M, Golkowski M, Xue AG, Khasnavis N, Ceribelli M, Ong SE, Thomas CJ, Gujral TS.

Cell Rep Methods. 2021 Jun 21; 2(1)

KInhibition: A Kinase Inhibitor Selection Portal.

Bello T, Gujral TS.

iScience. 2018 Oct 26; (8)49-53

Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.

Mendez OA, Potter CJ, Valdez M, Bello T, Trouard TP, Koshy AA.

J Neurosci Methods. 2018 Jul 15; (305)98-104

A comprehensive evaluation of increasing temporal resolution with multiband-accelerated protocols and effects on statistical outcome measures in fMRI.

Demetriou L, Kowalczyk OS, Tyson G, Bello T, Newbould RD, Wall MB.

Neuroimage. 2018 Aug 1; (176)404-416

Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal.

Ferreccio A, Mathieu J, Detraux D, Somasundaram L, Cavanaugh C, Sopher B, Fischer K, Bello T, M Hussein A, Levy S, Cook S, Sidhu SB, Artoni F, Palpant NJ, Reinecke H, Wang Y, Paddison P, Murry C, Jayadev S, Ware C, Ruohola-Baker H.

Cell Cycle. 2018; 5(17)535-549



Publications Link

Research Summary

I worked in Dr. Taran Gujral’s lab in the Human Biology Division of the Fred Hutch. My thesis was titled “Developing and applying systems-based approaches to kinase-centered biology”. I developed and implemented a web app in R that allows researchers to make data-driven decisions about the selectivity of kinase inhibitors: https://kinhibition.fredhutch.org/. I also used a combination of experimental approaches and computational modeling to study kinase signaling and its role in various malignancies, including the late-stage prostate cancer progression and the migration and metastasis of hepatocellular carcinoma. Throughout these projects, I learned to apply my strong background in computational analysis to solve real-world problems and make data-driven decisions.

Lab Information

Advisor: Taran Gujral
Co-Advisor: Peter Nelson